
32 1 

On cellular convection driven by surface-tension 
gradients: effects of mean surface tension 

and surface viscosity 

By L. E.  SCRIVEN 
Department of Chemical Engineering, University of Minnesota, 

Minneapolis, Minnesota 

AND C .  V. STERNLING 
Chemical Engineering Department, Shell Development Company, 

Emeryville, California 

(Received 28 July 1962 and in revised form 9 September 1963) 

The onset of steady, cellular convection driven by surface tension gradients on a 
thin layer of liquid is examined in an extension of Pearson’s (1958) stability 
analysis. By accounting for the possibility of shape deformations of the free 
surface it is found that there is no critical Marangoni number for the onset of 
stationary instability and that the limiting case of ‘zero wave-number ’ is always 
unstable. Surface viscosity of a Newtonian interface is found to inhibit stationary 
instability. A simple criterion is found for distinguishing visually the dominant 
force, buoyancy or surface tension, in cellular convection in liquid pools. 

1. Introduction 
In  small-scale fluid mechanics, of the sorts pertaining to chemical and 

petroleum engineering and t o  biology, for example, there is need for knowledge 
of the roles that interfacial regions between fluid phases may play in driving as 
well as impeding fluid flow. Mathematical analysis of the onset of hydrodynamic 
instability driven by surface-tension gradients and influenced by other surface 
properties is one means for studying these roles. The first such analysis 
to  appear was made by Pearson (1958); it is extended in Ss3-5 along lines 
suggested by our independent analysis of the onset of interfacial-tension- 
driven convection in superposed fluid layers of large extent (Sternling & Scriven 
1959). 

Because flows actually powered by surface or interfacial tension have been 
overlooked or misconstrued so often, there seems to be a need for simple criteria 
by which they can be recognized. In  the case of cellular convection in liquid 
pools, a means of distinguishing surface-tension-driven from buoyancy-driven 
convection is required. In  $ 7  it is shown that one is provided by the opposite 
relations between the directions of surface deflexion and flow produced by the 
two mechanisms. 

It is interesting that the development of the theory of convective instability 
was promoted by a still-prevalent misinterpretation of BBnard’s cells, photo- 
graphs of which continue to appear as illustrations of natural convection. A 
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resume of the conflict between predictions from the theory of the onset of natural 
convection on the one hand, and experimental measurements with shallow 
liquid pools on the other, will show the physical background for the mathe- 
matical analysis that follows. 

In his classic experiments on the cellular circulation patterns that occur in 
a very shallow (0.5-1 mm) pool of liquid heated from below, Benard (1900,1901) 
observed hexagonal cells with a spacing of 3.27 or more times the liquid depth. 
Benard’s experiments inspired Rayleigh’s (191 6) analysis of the stability with 
respect to buoyancy-driven convection of a fluid layer heated beneath. Ray- 
leigh’s analysis indicates that if hexagonal cells are formed the ratio of their 
spacing to the layer depth might be about 3.28. The agreement, which impressed 
BBnard (1927, 1928)) is illusory, we know now. 

Subsequent extensions of Rayleigh’s analysis by Jeffreys, Low and notably 
Pellew & Southwell (1940) show that the value of the disturbance wave-number 
at  marginal stability, on which the prediction of cell spacing is based, depends 
appreciably on the boundary conditions at top and bottom of the layer. Rayleigh 
assumed free surfaces maintained at constant temperature; the others dealt 
also with rigid boundaries a t  constant temperature. Jeffreys alone considered 
boundaries at which heat flux rather than temperature is held fixed. His analysis 
of this case is incorrect, however, owing to errors in the mathematical statement 
of the boundary conditions. But BBnard’s pool of liquid rested on a rigid plate 
maintained at substantially constant temperature, and a t  its free upper surface 
there was neither constant temperature nor constant heat flux. Rather, in 
view of temperature distributions found by BBnard, the situation at  the upper 
interface may have corresponded to a constant heat-transfer coefficient. Nor was 
the surface tension sufficiently high to hold the free surface flat, as tacitly assumed 
by Rayleigh and others after him. Extensions of Rayleigh’s analysis to boundary 
conditions more closely matching those that actually obtain in experiments with 
pools of liquid have not yet been published. Thus no prediction of cell spacing 
in buoyancy-driven convection yet exists with which the observations of BBnard 
(and others) may properly be compared. And even were such predictions avail- 
able from calculations of marginal stability, their pertinence to flows sufficiently 
strong to be observable might be questioned. 

According to Rayleigh’s analysis, the vertical temperature gradient must 
attain a certain minimum value for marginal stability and exceed it for insta- 
bility to occur. Subsequent extensions show that this value too depends signifi- 
cantly on the boundary conditions. Between Rayleigh’s case of two free surfaces 
and Low’s of rigid surface below and free surface above, the critical value in- 
creases 68 %. Low & Brunt (1925) seem to have been the first to notice that the 
gradients in Benard’s experiments were a t  least tenfold less than required by 
Rayleigh’s theory; later Benard himself recognized the discrepancy (1927, 
1928) and estimated the ratio at  10-4 or 10-5 (1930). Vernotte (1936a) b) ,  
recalculated the data and put the ratio a t  roughly It is unlikely that so 
large a discrepancy arises solely in inaccurate boundary conditions. 

BBnard observed upwelling of hot liquid always below the centres of depression 
of the free surface of the pool. He and his successors (e.g. Volkovisky 1939) 
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reported this to be the case in unsteady as well as steady cellular convection, 
even with the pool flowing as a film down an inclined surface. Here is the first 
unquestionable conflict with the theory: noting that in buoyancy-driven flows 
the free surface over an upwelling current is generally elevated, Jeffreys (1951) 
proceeded to show that the theory begun by Rayleigh indeed requires this 
behaviour. It is interesting that BBnard, although he intended to  avoid attempt- 
ing to explain the cellular patterns, recognized the conflict in his original papers 
and suggested that surface tension is somehow responsible. 

To resolve the surface-deflexion anomaly Jeffreys, evidently unaware that 
Volkovisky and others had already done so, recommended that BBnard’s experi- 
mental work be repeated. Block’s (1956) brief report tells of more than mere 
repetition. He found again that cellular convection can occur when the tempera- 
ture gradient is at  least an order of magnitude smaller than required by the theory 
of Rayleigh, Jeffreys, and Low. And whereas the theory predicts stability of a 
layer cooled from below, Block observed BBnard cells in a shallow pool so cooled ! 
Moreover, Block discovered that putting a film of silicone-an insoluble surface- 
active agent of very low surface tension-on a shallow pool heated beneath 
brings the convection to a half, but that adding liquid to increase the depth of 
the arrested pool causes circulation to resume when the combination of depth 
and temperature gradient becomes about that required by the theory. He aIso 
found that traces of contamination, which are difficult to avoid (Hickman 
1952)) on tt water surface have an inhibitory effect. Block drew the conclusion 
that BBnard cells in shallow pools are produced by variations in surface tension, 
which are in turn due to non-uniformities of temperature over the free surface 
(non-uniformities of composition can produce the same effect). This m’echanism, 
sometimes called the ‘Marangoni effect’, manifests itself in a variety of phen- 
omena (Scriven & Sternling 1960). Block implied that it would account for the 
surface depressions over upwelling hot liquid. 

Drying paint films often display BBnard cells, and when they do the circulation 
is observed whether the free surface is made the underside or the topside of the 
paint layer. The circulation therefore cannot be caused by the buoyancy 
mechanism. This fact led to Pearson’s (1958) theoretical demonstration, by means 
of a small disturbance analysis and independently of Block’s work, that, surface 
tension forces suffice to cause hydrodynamic instability in a liquid layer with a 
free surface, provided there is a temperature or concentration gradient of proper 
sense and sufficient magnitude across the layer. Pearson’s theory agrees in 
many essentials with the experimental findings he and Block have reported, 
and together they have illuminated a neglected type of surface-tension-driven 
flow. Nevertheless, the picture is far from complete in general outline, much less 
in detail. 

There is a question as to whether the effectively infinite surface tension 
tacitly assumed in Pearson’s analysis confers greater stability on the model he 
analysed than exists in reality. In  other words, what roles do flexibility and 
resistance to deformation of the surface play in determining stability? Pearson’s 
theory predicts a critical depth, usually rather less than that given by the Ray- 
leigh-Jeffreys-Low theory, below which there is stability relative to convection 
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induced by surface tension. Although Pearson cites experiments with evapor- 
ating films which seem to substantiate this prediction. Block observed Benard 
cells in exceedingly shallow pools and found no indication of a critical depth; 
but unfortunately he reported insufficient data to permit a quantitative com- 
parison. In  the same connexion the inhibitory action of relatively insoluble 
surface-active materials, referred to by both Block and Pearson, deserves 
analysis in the light of the departure from equilibrium tension that is produced 
by deformation of an interfacial film (cf. Scriven & Sternling 1960). There is 
another matter of fundamental significance. According to Pearson’s theory, 
which considers only the stationary regime of neutral stability-i.e. ‘marginal 
convective instability ’-the pool if unstable with a temperature or concentration 
gradient of one sense must be stable with a gradient of the opposite sense. 
However, Block seems to have observed Benard cells in comparable pools, one 
heated and the other cooled below, although the patterns may not have been as 
regular in the latter case. For certain unbounded systems of contiguous fluid 
phases in which convection is induced by interfacial tension, stationary regimes 
have been predicted for gradients of one sense and a combination of oscillatory 
regimes (i.e. ‘ overstability ’) with unusual stationary regimes for gradients of 
the opposite sense (Sternling & Scriven 1959). This suggests that an extension of 
Pearson’s analysis to include the possibility of oscillatory regimes might reveal 
similar behaviour by a liquid layer subject to surface tension forces, perhaps 
accounting for Block’s observation. The possibility of overstability by the buoy- 
ancy mechanism was disproved by Pellew & Southwell (1940) but remains an 
open question so far as the surface-tension mechanism is concerned. Benard 
reported permanently unsteady cellular convection in shallow pools of highly 
volatile liquids. Volkovisky mentioned the appearance of ‘turbulent ’ flow in 
pools more than 3-4mm deep. 

By extending Pearson’s small-disturbance analysis to a still idealized yet more 
realistic model of the fluid interface, we are able to establish the effects of finite 
mean surface tension and of surface viscosity. The model used is that of a New- 
tonian fluid interface, in which the local departure from equilibrium interfacial 
stress is directly proportional to the local rate of interfacial strain, the pro- 
portionality constants being independent of direction in the interface. In  the 
next section the dynamical equations for such an interface are simplified for a 
surface that departs only infinitesimally from a plane. These equations are then 
the crucial boundary conditions to be applied at the free surface of a liquid 
layer subjected to infinitesimal disturbances. 

In $ 3  the instability problem is formulated and carried to the point of a 
formal solution, equations (33), from which the development in time of any 
elementary, infinitesimal disturbance can be computed. In  $ 4  it is shown that 
disturbances having a vorticity component perpendicular to the layer all are 
damped, and so there is indeed justification for omitting them from considera- 
tion. The subsequent section contains results of calculations of the conditions 
necessary to the existence of neutrally stable disturbances of the steady, or 
stationary, kind-the marginal convective instability mentioned above. 
Calculations for oscillatory instability, or overstability, are sufficiently more 
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complex that we do not undertake here to search for the oscillatory regimes whose 
possible existence was suggested above. Section 6 contains remarks on the role 
of free interfaces in hydrodynamic instability and the criterion for disting- 
uishing driving mechanisms is presented in the last section. 

The method used below to reduce the equations to dimensionless form may be 
of minor interest. It differs from the conventional one by obviating the need 
to construct a definite unit of measurement for a physical variable when no 
natural unit occurs in the problem statement, as for velocity here. 

2. Dynamics of a Newtonian fluid interface 
We shall be concerned with a surface infinitesimally deformed from a plane, 

which we take as the original and mean position of the free surface of the liquid 
layer. For simplicity all lengths are measured in units of mean layer depth d. 
In Cartesian co-ordinates (x, y, z )  the perturbed surface is given by 

z = 1 + (B*/d) B(x, y). 

B* denotes the maximum deflexion of the perturbed surface, the unit in which 
local surface deflexion is to be measured; symbols bearing asterisks are used 
throughout to denote units of measurement. To the first order in the relative 
amplitude of the deflexion, the unit normal n to the perturbed surface points in 
the z-direction, i.e. n = k, and the mean curvature H is given by 

To the same approximation the surface gradient operator in the interface is 
equivalent to the two-component gradient operator for surfaces of constant z 

v - i - + + J - - .  a . a  
, I -  ax iry 

The kinematic condition on the bulk-phase velocity V a t  a free interface of 
negligible, or at  least sensibly constant mass, is 

k . v  = ( ~ * / ~ * ~ * ) a ~ / a 7 .  (1)  

where 7 is time; and, according to the equations of motion of a Newtonian fluid 
interface (Xcriven 1960; cf. Aris 1962), the dynamic condition for an interface 
of negligible mass is 

- F  = (Ga*/F*d) V , , ~ + { ( K + C )  V*/P*d2}VII(VII.V) 

+ (cV*/F*d2) k x V,,(k. V x V) + (g*/P*d) 2Hvk, ( 3 )  

to the first order in (B*/d) again. Here CT is the (dimensionless) mean, equilibrium, 
surface tension; K and E are, respectively, the surface dilational and shear vis- 
cosities, which are assumed to be uniform; and &vx, IT*, V*, and F* are as.yet 
unspecified units of surface-tension variation, surface tension, velocity, and 
force, respectively. The viscous traction exerted on the interface by gas standing 
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overhead is ordinarily negligible. The traction F exerted on the interface by the 
incompressible liquid beneath is as usual given by 

- F  = - ( P * / F * ) ~ P + ( / L V * / F * ~ ) ~ . [ V V + ( V V ) ' ] ,  (3) 

where P is the excess of the local thermostatic pressure over the ambient pres- 
sure and VV + (VV)' is the local rate of strain. Equating the z-components of 
( 2 )  and (3), we have the balance of normal forces a t  the interface 

(4) (dpV*/B*5*) [- (P*d//LV*) P+ 3DV] = ITV:~ B,S 

where V = k . V  and D = 3/32. 

Equating the surface divergences of ( 2 )  and (3), we obtain from the tangential 
force balance and the continuity equation a second condition on V at the inter- 
face 

Finally, by equating the surface curls of ( 2 )  and (3),  we extract a third inde- 
pendent scalar relation from the original vector equation; this one, heretofore 
overlooked, is a condition on the z-component of vorticity at  the interface 

-DzV+VFI V = ( S ~ * / , U V * ) V ~ , ( T - ( ( / C + F / , H ~ ) V ~ I ( D V ) .  ( 5 )  

DW = (€/pa) V:l W ,  (6) 

where W = k.V x V 3 k.VIIx V. 

Equations (4), ( 5 )  and (6) are free-surface boundary conditions on flow in a 
liquid layer subjected to infinitesimal disturbances. 

3. Mathematical formulation 
Following Pearson, but with somewhat different notation, we take for the 

undisturbed, steady-state system a quiescent liquid layer whose surface at  
z = 0 lies against a solid body, whose free surface at z = 1 is in contact with an 
inviscid fluid, and whose temperature is a linear function of the z co-ordinate 
alone. Next, we superpose an infinitesimal disturbance and linearize the equa- 
tions of motion and heat transport. In  their general dimensionless form with 
body forces omitted§ these equations, which apply in a liquid layer of any 

1 If the effect of gravity a t  the perturbed interface were to be included, the term 
- (pgd2/cr*) B sin 6 would be added to the right-hand side of this equation, 6, being the 
angle the force of gravity makes with the mean position of the free surface. 

3 Since the liquid is supposed to be incompressible, the potential of any conservative 
force field such as gravity can be accommodated, if necessary, in the pressure term. 
However, it  would be necessary to include gravity explicitly in equation (8) were it desired 
to account for density variations producing appreciable buoyancy forces, as in a study of 
coupling with buoyancy-induced instability (or stability). 

It would be necessary to include gravity in the boundary condition for the normal 
component of traction at  equation (26) were it desired to focus on the peculiarities of dis- 
turbances having gravity-wave in contrast to capillary-wave character, i.e. wavelength h 
such that the familiar ratio of gravity to capillary forces in a wavy surface, 

(pgA2/4+a*) sin 0 = (ppP/a*) sin eta2, 

is not small. Such would be the case in a study of coupling with Rayleigh-Taylor insta- 
bility or the converse situation of stability. 
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orientation, are V.V = 0; ( 7 )  

Here u is the kinematic and ,LA the dynamic viscosity; 9 is the thermal diffusivity; 
2 is the undisturbed temperature at  z = 1 less that at  z = 0, diviaed by the layer 
thickness d ;  7" is a characteristic time in units of which time 7 is to be measured; 
T" is a characteristic temperature disturbance; and so forth. With the aid of 
standard vector operators and identities we obtain from ( 7 )  to (9) a set of scalar 
equations : 

V2P = 0, (10) 

[($) &v.] v2v = 0, 

As the only direction of physical distinction is that denoted by k, and V = k .  V 
and W = k .  V x V lie along it, they are conveniently referred to as longitudinal 
components of velocity and vorticity, respectively. Equations (10) to (12) for 
pressure and these two variables are quite independent. The longitudinal 
component of velocity can be eliminated from equation (13) to get an equation 
in temperature alone: 

[(g*) g - V 2 ]  [(g) g - V z ]  V2T = 0. 

To simplify these equations we assume that the disturbance behaves exponen- 
tially with time, that its longitudinal ( z )  and transverse (5, y) dependencies 
are separable, and that its transverse structure is periodic and wave-like in the 
sense of satisfying the Helmholtz equation in the plane (cf. Pellew & Southwell 
1940). That is, we assume: 

P = eP7f(x, y ) p ( z ) ,  V = eBTf(x, y)v (4 ,  = eP7f(x,y)w(z), 

with V;I f = - ay. Here pis the dimensionless time constant, in general complex. 
The separation constant a defines the size (though not the shape) of cells in the 
periodic transverse structure; it  is the dimensionless ' wave-number ', 27r times 
the ratio of layer thickness to a mean size, or wavelength, of a cellular pattern, 
Equation (14) becomes 

T = eP7f(x, y) t ( z ) ,  B = eP7f(x, y)b,, 

(DZ-azq2) ( D 2 - a W )  (D2-az) t  = 0, (15) 

where q2 = 1 + J$,,C, r2 = 1 + 6, A"', = v 1 9 ,  C = Pd2/a2vr*. 
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(D2-a2)p  = 0, 

[(D2-a2r2)(D2-a2)]v = 0, 

(D2-a2r2)w = 0, 

(D2-$qZ)t = ( 9 V * d 2 / 9 T * ) ~ .  

A useful relation between pressure and the longitudinal component of velocity 
follows from (71, (8) and (16) 

(P*d/pV*)p = c 2 ( D 3  - a2r2D) v. (20) 

Thus once the solution of equation (15) for the longitudinal distribution of tem- 
perature is found, the longitudinal velocity distribution is given by differentia- 
tion and (19), while the longitudinal distribution of pressure is given by further 
differentiation and (20). In  an analysis by the method of small disturbances 
it is not necessary to have the functional form of the transverse structure, 
f ( ~ ,  y), which defines shape in a cellular pattern; it would be required, however, 
were the vector velocity field of a disturbance desired. 

The transverse components of velocity are represented by 

V z z  = V - k V .  

It can be shown, e.g. from the familiar identity 

v2v = - v x v x v + v ( v . v ) ,  

that in general (cf. Sani & Scriven 1964) 

-VqIVII  = V z I D V + k D ( V . V ) - k x  V W ,  

from which it follows in the present case that 

Consequently, were we to specify the planform of a disturbance the solutions of 
(15) and (18) would provide a complete history of perturbations of the sort con- 
templated until such time as non-linear effects become important. 

Six boundary conditions on velocity and temperature are needed for the solu- 
tion of (15). Three of these occur a t  the solid surface at  z = 0; the other three 
occur at  the perturbed free surface z = 1 + B*B/d but are confounded with the 
deflexion B, which, being caused by the disturbance, is an additional unknown. 
For this reason a fourth condition at the free surface is needed, making a total of 
seven boundary conditions rather than six. 

The boundary conditions at  x = 0 are: 

P = 0, whence by (19) (D2-a2q2) t = 0, (21) 

VII  = 0, whence DV = 0 and (D3 - a2q2D) t = 0, (22) 

T = 0, whence t = 0, ( 2 3 4  
and either 

for Pearson's ' conducting ' case-constant temperature a t  z = O-or 

DT = 0, whence Dt = 0, (23 b)  
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for his 'insulating' case-constant heat flux at  z = 0. These reduce the general 
solution of (15) to forms involving only three arbitrary constants: 

t = A,[,N',(sinh arz - T sinh a x )  + r sinh az] 
+ A,[N'&.(cosh arz - cosh a x )  - (cosh aqz - cosh az)] 
+ A ,  sinh aqz (24 a )  

for the conducting case; and 
t = A,[Npr(cosh arz - cosh az) + cosh az] 

+ A2[,/V-,,(sinh arz - T sinh ax) - ~ ( q - l  sinh agz - sinh az)] 
+ A ,  cosh aqz ( 2 4 b )  

for the insulating case. 
Although the remaining four conditions apply at the perturbed free surface, 

they may be rewritten as boundary conditions at  z = 1. If we retain the leading 
terms of the Taylor expansion of temperature about z = 1 we have 

If we assume as usual that surface tension is a linear function of temperature of 
the deflected surface we have 

T = T( 1)  + (LYB*/T*) B. 

= go + (t;T*/g*) [T( 1) + (LYB*/T*) B] 
and V;z g = (t;T*/Sg") [V;, T( 1) + (LYB*/T*) V:I B],  
where t; is the differential coefficient of surface-tension change with temperature. 
Then, to the first order in perturbations and regardless of the units in which 
velocity and pressure perturbations are measured, the kinematic condition ( 1) 
becomes 

the normal force balance (4) becomes 

and the tangential force balance (5) reduces to 

a-Z(D2-a2 g 2 ) t - (YB*/T*) ~ ~ r @ o  = 0; (35) 

( p g / a * d )  a - 4 [ ( 0 2 -  a%,- 2a2) ( 0 2 -  a2q2)  D] t - (YB*/T*) boao = 0; (26) 

The fourth condition is the requirement that energy be conserved, which to the 
first order demands continuity of heat flux at the free surface, and in that way 
leads to (28) 
where A? is the heat-transfer coefficient, assumed constant. 

In these equations B* denotes the maximum deflexion of the perturbed surface. 
The units a* and T* in which surface-tension and temperature perturbations, 
respectively, are to be measured remain at  our disposal. We choose v* to be the 
undisturbed surface tension so that CT,, = 1, and T* such that (YB*/T*) = 1. 
Defining several dimensionless parameters : 

Dt + ( X d / p c  9) t + ( X d / p c  9) (PB*/T*) b, = 0, 

Crispation group, N& = f.L9/cT*d; 
Surface viscosity group, A& E ( K + € ) / p d ;  
Marangoni number, -KMa = t;9clz/p9; 
Nusselt number, -"s,, = A?d/pc9; 
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( 0 2  - "'4') t - N p ,  6bo = 0, (29) 

J'&[(D2 - - 2a2) ( 0 2  - a2q2) 03 t - a4b0 = 0, (35) 

[(D2+t1') (0'- a 2 q 2 ) ] t + a 2 ~ ~ ~ ~ [ ( D 2 - ~ . 2 ~ 2 ) D ] t - ~ 2 ~ ~ ~ a t - ~ C 1 2 & ~ ~ a b 0  = 0,  (31) 

Dt + NNu t + b, = 0. (32) 

This set of equations suffices to determine, though not uniquely, the three 
remaining arbitrary constants and the unknown surface deflexion, provided the 
wave number a, the time constant p (now disguised as 6)) and the dimensionless 
parameters have such values that a non-trivial solution to the set exists. For a 
solution to exist the determinant of the matrix of coefficients of A,, A,, A ,  and 
bo after equation (24) is substituted in (29) to (32) must vanish; this in turn 
requires that the following characteristic equation be satisfied: 

S, - rS c,-c 0 -1 

r[2(cr - C) - 6CI 2(r#, - S )  - CS 0 1 l a J G r  J$r 5 
2(S, - rS) + 68, 2(Cr - C) + 6Cr 0 0 

ad$>rr(Cr- C) aJ'&(rS, - 8)  ascq JG,( 1 - JPT) 

+ -V', JtLu (8, - rS) + MI+ ~.l';r, (C, - C) 
+ r(aC +MNu 8) + 4 8  - q#,) +L/trNZL(C - Cq) 

a.,Z',,( 1 -J$,.) 6 - 1 8, - rS c,-c 0 -1 

rE2(Cr - C) - tCI 2(rS, - S )  - 6S 0 1 l d i r 4 r t  

~.l;b,(S, - rS) + rS " V,,(C, - C) + (C - C,) 
-,4'&.r(C,-C)+rC J",(rS, - S )  + S - qS, @4 0 

+ a- yrir(C, - C) + aJYtri(rS,- 8) 

+ JK*k 8, 

-_~__-.__ ~ ~ __ - -______ -~ _ _  - JGf, 

Sq 1 - Jvh, 

( 3 3 4  
for the conducting case; and 
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for the insulating case. Here 

S = sinh a, 

C = cosh a, 

S, = sinh aq, 

C, = cosh aq, 

S, = sinh ar, 

C, = cosh ar, 

and the original determinant in each case has been partitioned to isolate the 
Marangoni number as a factor. These equations are the formal solution of the 
entire instability problem, for they permit the time course of any type of infinitesi- 
mal disturbance to be computed once its wave-number, a, and the various 
dimensionless parameters of the system are specified. 

4. Longitudinal vorticity 
For the solution of (18) in the longitudinal ( z )  component of vorticity two 

boundary conditions are needed. They are V = 0 at z = 0, whence VII x V = 0 
there; and (6) at z = 1. Thus 

(D2-a2r2)w = 0, (18) 

w = O  at x = O ,  (34) 

Dw+a2(e/,ud)w = 0 at x = 1. (35) 

Clearly these are satisfied by any disturbance having transverse structure such 
that longitudinal vorticity is totally absent. Transverse structures with longi- 
tudinal vorticity are also possible, but are restricted to a discrete set of wave- 
numbers; namely, those satisfying the ancillary characteristic equation, 

(36) ar coth ar = - a2(e/,ud), 

obtained by substituting the solution of (18) and (34) in (35). 
In stability considerations, however, there is no need to go beyond the trivial 

solution, w = 0: any disturbance possessing longitudinal vorticity is damped 
and therefore cannot lead to instability. In  mathematical terms, multiplication of 
(18) by the complex conjugate G, integration over the layer depth, and introduc- 
tion of (34) and (35) through integration by parts leads to 

-a2(+)  G ( l ) w ( l ) -  DiZDwdz-a2r2 (37) 

It follows immediately, since a2(r2 - 1)  = P(d2/m*) ,  that 

/3 = -($) [Io 1 ( D G D u r + a z ~ u : ) d z + ( 4 ) a 2 G ( l ) w ( l ) ] / ~ ~ 1 G u r d e .  (38) 

Pd 

Because the right-hand side is negative definite the time factor is real and nega- 
tive. In physical terms there is no source and, in creeping flow, no production of 
longitudinal vorticity in the liquid layer; moreover, the solid surface is a passive 
boundary and the free surface a dissipative boundary with respect to longitudinal 
vorticity. Thus this vorticity component can only diminish in magnitude there- 
after if a t  any instant it is not totally absent. We therefore consider it no further 
in this analysis. 



333 L. E.  Scriven and C .  K Sternling 

5. Neutrally stable stationary disturbances 
The liquid layer may be subject to two kinds of instability, according as the 

exponential time constant p, now disguised as [, is real or complex. The first 
is the stationary r6gime (often called ‘convective instability’) in which the dis- 
turbance grows steadily in place; the second is the oscillatory regime (‘over- 
stability ’) in which the growing disturbance displays temporal periodicity. In  
either case the real part of the time constant must be positive, for if it  is negative 
the disturbance dies out in time. Thus we can solve for the conditions under 
which the layer first becomes unstable, i.e. neutral (or ‘marginal’) stability by 
setting the real part of p equal to zero in the characteristic equation. If in so 
doing we set the imaginary part also equal to zero, we can find only stationary 
r6gimes-fully time-independent motions. This is what Pearson did, and what 
we shall do in this section, deferring discussion of the possibility of equally 
significant oscillatory rhgimes-time-dependent neutrally stable motions. 

If we set p = 0 we have [ = 0, q = r = 1, and the solutions (24) satisfying the 
boundary conditions at z = 0 become 

t = A; z(az cosh az - sinh az) +A:  z(az  sinh az - 3 cosh a x )  + A; sinh az, 

t = d;z (az  cosh az - sinh az) + &(a2z2 sinh az - 3az cosh az + 3 sinh az)  

+ A; cosh az. 

(39 a )  

(39 b )  
The characteristic equation reduces to 

. .pif ,  Sa(acosha+,.l.r,,,sinha) __ [a-sinhacosha+ ( -$ i r i /2 )  a(a2-sinh2a)] 
a3 cosh a - sinh3 a - 8 N&a3 cosh a 

(40 a)  
for the conducting case, and 

8a(a sinh a + MNu cosh a)  [a - sinh a cosh a + (-,Gri/2) a(a2 - sinh2 a)]  1.’ - ~ _ _ _ _  _____ ___ 
* iwa - a3 sinh a - a2 cosh a + 2a sinh a - sin2 a cosh a - 8 V&a3 sinh a 

(40 6)  
for the insulating case. 

In the limit of vanishing surface viscosity and infinitely large surface tension 
Mr. 1 2  - - &,V& = 0 and these forms simplify to the characteristic equations obtained 
earlier by Pearson. In the absence of surface viscosity or an equivalent dissipa- 
tive surface effect the interfacial engine itself would convert surface energy to 
kinetic energy reversibly regardless of the viscosity of the adjacent liquid. With 
infinite tension the free surface would preserve, as may be seen from equation 
(26), an unnatural flatness. 

Equations (40) are graphed in figures 1 to 6, the curves there representing 
neutral stability with respect to stationary disturbances. Each curve separates 
a region of stable conditions to the left from one of the unstable conditions to the 
right of it, The extensions of the curves beyond the confines of the figures are 
evident from the limiting behaviour of the Marangoni number, shown in table 1. 
The most striking aspect of these curves is their dependence on the physics of the 
boundaries, particularly the thermal behaviour of both boundary surfaces and 
the elastic behaviour of the free one. In  the conducting case the liquid layer is 
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always unstable with respect to disturbances of small wave-number (great wave- 
length) and there is, strictly speaking, no cri t ical Marangoni number (except in 
the mathematical limit of JP;, = 0). That is, there is no value of the Marangoni 
number below which disturbances of all wave-numbers are damped. However, 
as MC, diminishes (increasing surface tension) the spectrum of wave-numbers 
is barely at  first, then ever more sharply divided into two ranges of instability 

Insulating case 
Conducting r----h_ 7 

case A$&& = 0 LVNU * 0 
a -+ 0, && = 0 80/a2 48 48&iU/a2 

a -+ 00, MVi = 0 8a2 8a2 
A C T  =k 0 2 a 2 / 3 ~ c T  2a2/3~4C, ~ J N , / ~ & c ,  

-Vr, * 0 4 a 3 4  4a3Mri 

TABLE 1. Limiting behaviour of Marangoni number for neutral stability 

Jl'L 
FIGURE 1. Neutral stability curves, conducting case (-h$-i = 0). 

as shown in figure 1. In  the insulating case the situation is the same when the 
heat flux at  the free surface is also maintained constant (bf"i7u, = 0); otherwise 
there does exist a critical Marangoni number, as shown in figure 2. In both cases 
it is clear that the mathematical limit of A'& = 0 is unrealistic at small wave- 
numbers, although it is an accurate approximation at  higher wave-numbers 
provided the crispation group, Ncr, is not much more than This group 
varies widely in magnitude, for example, from 2 x for a water layer of 1 mm 
thickness to a value thousands of times greater for a 100p layer of viscous organic 
liquid. In the original experiments by Behard it was probably of the order of 
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10-5 or 10-4. For the reiiivestigation by Volkovisky (1939) more definite esti- 
mates may be possible for some of the liquids he used. 

In circumstances such that all wave-numbers are unstable or two distinct 
ranges of wave-numbers are unstable even more caution than usual must be 
exercised in drawing inferences about physical reality from the linearized 

A,, 
FIGUIZE 2.  Neutral stability curves, insulating case (-fit., = 0). 

"20 40 60 100 200 1000 2000 

-,%Ha 

FIGURE 3. Effect of dissipation in the interface, conducting case = 0). 
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stability analysis. Whatever the grounds in simpler circumstances for predicting 
properties of a resultant fully developed flow from a related neutral stability 
calculation, the basis of prediction shifts to the more involved computation of 
fastest-growing wave-numbers, i.e. the wave number for which the real part of the 

6 

5 

4 

a 3  

2 

1 

'20 40 60 100 200 1000 2000 8000 

4, 
FIGURE 4. Effect of dissipation in the interface, 

insulating case (c4'& = 0). 

J Y M a  

FIGURE 5 .  Interaction of dissipation and heat transfer at the 
interface, conducting case (Air = 
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exponential time factor is greatest. Until the computation is made we can only 
surmise that curves of constant growth rate parallel the neutral stability curve 
except at the smallest and very largest wave-numbers which if they grow at all 
do so very slowly indeed (cf. Sternling & Scriven 1959). Thus with no surface 
viscosity, as in figures 1 and 2,  and relatively high surface tension (A’& < 
the dimensionless wave-number that is usually dominant is probably close to 
a = 2,  because there are pronounced local minima in the neutral stability curves 
in the vicinity of that value. In many other instances shown in figures 1 to 6, 
particularly those of relatively low surface tension or high surface viscosity, 

5- 

4 -  

- 

- 

20 40 60 100 200 1000 2000 
J l r M ,  

insulating case (A’& = 10-4). 
FIGURE 6. Interaction of dissipation and heat transfer a t  interface, 

there is no local minimum to seize upon: further discussion requires consideration 
of growth rates and possible wave-numbers of disturbances in relation to the 
maximum spatial dimension and time interval available in the specific physical 
situation.$ It may ultimately prove possible to define a quasi-critical Marangoni 
number in the manner of Brooke Benjamin’s (1957) quasi-critical Reynolds 
number for film flow. 

The chief effect of a surface-excess of mechanical energy dissipation brought 
about by surface viscosity (..Cri + 0) is, unsurprisingly, to render the liquid layer 
more stable or more nearly stable, especially with respect to disturbances of 

$ The effect of gravity requires consideration too, because through the normal stress 
balance a t  the interface it can strongly influence flow disturbances for which a is suffi- 
ciently small, corresponding to wavelength h large compared to layer depth. Dr Brooke 
Benjamin has pointed out in a private communication that for ordinary liquids in hori- 
zontal layers 1 mm or more deep the action of gravity becomes significant for wavelengths 
exceeding about 5 mm and could very well stabilize disturbances of longer wavelength 
if the free interface is at the top of the layer. 
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large wave-number (short wavelength), as figures 3 to 6 indicate. One conse- 
quence is displacement of local minima in the neutral stability curves to Maran- 
goni numbers five times as great and wave-numbers half as large when the surface 
viscosity group increases from zero to 10. This group too varies widely in magni- 
tude. For a water layer 1 mm thick it might range from for a relatively clean 
interface to 10 or more for one covered by an insoluble monolayer (for a discus- 
sion of surface viscosity values see references cited by Sternling & Scriven 
1959, Scriven & Sternling 1960). 

The influence of boundary conditions is further complicated by the interaction 
of thermal and mechanical conditions at the free surface, examples of which are 
provided by figures 5 and 6. Furthermore, the radical differences between the 
extremes of constant temperature-the ‘ conducting ’ case-and constant heat 
flux at  the rigid boundary-the ‘insulating ’ case-indicate a stronger depen- 
dence on the effective Nusselt number in the general thermal boundary condition 
there than was supposed in Pearson’s discussion (of his equation (9)). 

Thus the story of convection cells induced by surface tension still is far from 
complete, Each of the preceding four paragraphs provides a basis for questioning 
Pearson’s comparison of his analysis with observation and experiment. However, 
his conclusion that what BBnard observed was actually surface-tension-driven 
flow, can be established by consideration of the relation between directions of 
surface deflexion and of flow, as is done below. 

6. Remarks 
To disregard the possibility that the free surface is deformed by flow amounts 

to constraining it to remain perfectly flat, as though by a rigid boundary that 
somehow allows tangential slip-or by an exceedingly large surface tension. 
The result, it  is now clear, is to confer on the liquid layer greater stability at  
large wavelengths than exists when the interface deforms elastically. The lower 
the mean surface tension, the less the stability; thus surface tension has a stabili- 
zing tendency, here with respect to disturbances that are standing waves in 
essence. Brooke Benjamin (1957) has found that the tendency of surface tension 
is the same in the formation of travelling waves in film flow. Indeed, it should be 
expected to have the same effect on any given mode of motion in liquid with a 
free boundary. 

An example is the system of two unequilibrated, immiscible fluids in which 
convection is induced by interfacial tension, which we have analysed on the 
simplifying assumption of a permanently flat interface (Sternling & Scriven 
1959). It is likely that the constraint implied by this assumption has a stabilizing 
effect that is not always realistic, just as above. 

Another example is the pool of liquid in which convection really is induced 
by buoyancy, in which case Low’s theory for one rigid and one ‘free’ boundary 
might be pertinent. But the ‘free’ boundary of Rayleigh, Jeffreys, and Low, 
since it too is free only with respect to lateral motion along it, is just as likely to 
have a stabilizing effect on buoyancy-driven flow in a shallow pool. The mercury 
pools used by Nakagawa (1957a, b, 1959) in his important experiments are an 
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interesting case. Had the free surface of the mercury been clean and in vacuo 
the crispation group would have been extremely small, 

"4'& N 1.7 x (d  3 cm); 

as it was, the value surely was no more than one order-of-magnitude greater: 
still sufficiently small that the destabilization associated with finite, as opposed 
to infinite surface tension, was negligible. 

Because the boundary conditions corresponding to an inflexible but laterally 
free surface are simple to handle, particularly in certain variational methods of 
solving stability problems, they have frequently been imposed. Heretofore the 
alternative has been to adopt the sometimes less tractable conditions correspond- 
ing to a completely rigid boundary. Consideration of the role of surface flexibility 
in determining stability makes clear that these models of an interface are merely 
two of many that are latent in linear, homogeneous vector boundary conditions 
on velocity and traction. Some elementary model interfaces that neither supply 
nor dissipate mechanical energy are the (i) completely rigid; (ii) laterally rigid 
but flexible, like a sheet of paper afloat; (iii) inflexible but laterally free as we have 
discussed; and (iv) completely free, i.e. deformable in both the normal and lateral 
directions. The listing is in order of decreasing constraint on motions in the 
vicinity of the interface. 

The elementary models become more complicated when they are modified to 
account for dissipation in the surface, as by the working of linear surface 
viscosities. It is well-known that surface-active agents suppress wave formation 
in film flow and inhibit surface-tension-driven flows in general, and it has been 
suggested that these effects be analysed in terms of surface viscosity. The 
suggestion can be extended to Nakagawa's experiments with pools of mercury, 
for he found that surface contamination, which is notoriously difficult to avoid 
on mercury, inhibits convective instability induced by buoyancy. He indicated 
that without extensive precautions a film of contamination builds up which is 
laterally rigid but flexible, or even completely rigid, which seems rather less 
likely. 

The situation becomes still more complicated when, as in convection induced 
by surface tension, the interface must be represented as the prime mover, the 
seat of instability. All of these complications can, however, be conveniently 
modelled with the Newtonian fluid interface, which we have used here, and its 
generalizations. This approach centring on the fluid-fluid interface should be 
compared with that taken by Brooke Benjamin (1960) by way of the ' compliant 
boundary ), which is more closely related to conventional idealizations of fluid- 
solid interfaces. 

The important roles of surface tension and surface viscosity in the neutral 
stability problem studied here point to the need for careful consideration and 
accurate models of interfacial behaviour in small-scale fluid mechanics. The 
smaller the scale, the greater in general is the relative importance of interface 
over bulk, and the more acute is the need. 
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7. A simple criterion of driving mechanism 
The relation between directions of surface deflexion and of flow is established 

as follows. In  a steady motion the longitudinal ( z )  component of velocity vanishes 
at the free surface of the liquid, according to the kinematic condition (1). There- 
fore, if DV is negative at the free surface, the liquid immediately beneath is 
moving towards the surface. If a t  the same point the surface deflexion is also 
negative, then there is upwelling beneath the depression in the surface. Hence 
the sign of the dimensionless ratio B/DV reveals the desired relation, and does 
so for the entire surface a t  once, because of the periodic transverse structure. 
From equations (4) and (13), or (30) and (19), we get for steady flow (< = ,8 = 0;  
also choose V* = B T * / 9 d 2  for convenience) 

[(D2 - 3a2) (D2 - a2D)] t 
- 20-  - - . ___-_______ a t  z = 1. 

With (39) we find that in both the insulating and conducting cases. 

D v - D v  a4 (D3 - a”) t 

B 3NC, (Ah/&) (cosh a - a sinh a)  - a cosh a 
DV - a2 (Ah/A~)asinha+cosha+sinha ’ (43) 

Finally, by invoking the kinematic boundary condition (29) the ratio of constants 
can be eliminated in both cases to give 

BID V = 2M&/{(sinh a)2 - a2}. (43) 

Because (sinha)2 2 a2 and A’& is necessarily positive, the right-hand side is 
always positive. Therefore in  steady cellular convection driven by surface tension, 
there is upflow beneath depressions and downJZow beneath elevations of the free 
surface; more accurately, flow is toward the free surface in shallow sections, away 
in deeper sections. The relationship is just the converse in buoyancy-driven 
flows, as Jeffreys (1951) showed. In  the first situation liquid wells up to fill and 
thereby reduce the curvature of the depression left as the top layers are swept 
aside by surface flow; in the second, liquid is driven upward by buoyancy. This 
contrast is a simple means of distinguishing which of the two mechanisms is chiefly 
responsible for an observed flow. Thus from BBnard’s words and illustrations 
it is plain that the steady flows he saw were all driven by surface tension. The same 
is true of those Volkovisky saw in pools of water, ethanol, and various oils. One 
can now identify other experimenters who have studied surface-tension-driven 
convection without fully realizing i t f r o m  Varley and Weber in the 1850’s, who 
were probably the first to describe cellular convections (see Scriven & Sternling 
1960), to Levengood (1  959), who described curious secondary features of ‘ localized 
thermal instability’ in very shallow pools of methanol some 100 years later. 

Mrs E. A. DuBois assisted with algebra, as did Mr X. B. Reed, Jr., who also 
made the numerical calculations. Parts of the work were supported by NSF 
Grant 10182 on Interface Mechanics and by the Graduate School of the University 
of Minnesota. 
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